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Abstract. By considering a lattice model of extended phase space, and using techniques of non-
commutative differential geometry, we are led to: (a) the concept of vector fields as generators of
motion and transition probability distributions on the lattice; (b) the emergence of the time direction
on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for
the evolution of the observables in analogy with classical dynamics. We show that, in the limit of a
continuous description, these results lead to the time evolution of observables in terms of (the adjoint
of) generalized Fokker–Planck equations having: (1) a diffusion coefficient given by the limit of the
correlation matrix of the lattice coordinates with respect to the probability distribution associated
with the generator of motion; (2) a drift term given by the microscopic average of the dynamical
equations in the present context. These results are applied to one- and two-dimensional problems.
Specifically, we derive: (I) the equations of diffusion, Smoluchowski and Fokker–Planck in velocity
space, thus indicating the way random-walk models are incorporated in the present context; (II)
Kramers’ equation, by further assuming that, motion is deterministic in coordinate space.

1. Introduction

Over the last few years there has been an increasing interest in exploring the possible relevance
of non-commutative geometry (NCG) in various areas of physics. Roughly speaking, the
basic idea in this context, is to try to develop an appropriate conceptual and mathematical
framework in which the fundamental object is no longer a manifold (intuitively conceived as
the generalization of a geometrical surface), but rather an appropriate algebra A (e.g. of R

or C functions on it). This is (partly) motivated by the well known result that commutative
C∗-algebras correspond biuniquely to locally compact topological spaces, hence all relevant
information for the topological structure of such spaces is encoded in their function algebra
(e.g. [1]).

From an algebraic point of view there are two possible lines of approach, depending
on the commutativity or non-commutativity of the algebras considered. Though the latter
has received considerable attention, especially in connection with the study of quantum
groups and quantum field theory ([2–6] and references therein), it is true that even if the
algebra A is commutative, the resulting structures are quite rich, allowing for a considerable
generalization of familiar geometric concepts, while keeping a rather close contact with
ordinary (commutative) differential geometry. In particular, geometrical concepts and methods
may be developed on both ‘continuous’ and discrete sets, with interesting applications in such
diverse fields as Riemannian geometry, gauge field theory, integrable dynamical systems,
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5268 A Dimakis and C Tzanakis

stochastic calculus, symplectic mechanics and kinetic theory ([7–17]; for a review see [18, 19]
and references therein). In this connection, a basic tool is provided by the (great variety of)
differential calculi that can be defined on a commutative algebra A with unit 1, generalizing
the familiar (exterior) calculus of differential forms. More specifically, a differential calculus
(DC) on a commutative algebra A, is a graded associative, in general non-commutative algebra

�(A) :=
⊕
r∈N0

�r(A)

where�0(A) = A,�r(A) is an A-bimodule, equipped with an exterior derivative, i.e. a linear
operator

d : �→ � d2 = 0 d(1) = 0 (1.1)

d(ωω′) = (dω)ω′ + (−1)rω dω′ ω ∈ �r(A). (1.2)

Elements of �r(A) are called (differential) r-forms and we assume that as an A-bimodule,
�r(A) is generated by d(�r−1(A)).

A key concept here, allowing for interesting conceptual insights, is the commutative and
associative product of 1-forms defined by†

ω • df := [ω, f ] := ωf − fω f ∈ A ω ∈ �1 (1.3)

and extended bilinearly in A, so that

(f ωg) • (f ′ω′g′) = ff ′(ω • ω′)gg′ f, f ′, g, g′ ∈ A ω,ω′ ∈ �1 (1.4)

(for more details, see [20], sections 2 and 3). For the existence of this • product, commutativity
of A is essential.

In the usual DC, equation (1.3) is zero so that • is trivial. In fact, by (1.3), the Leibniz
rule (1.2) can be written in �1 as

d(fg) = f dg + g df + df • dg. (1.5)

Thus (1.5) stresses the nature of non-commutative DC as a deformation of the usual DC. On
the other hand, it is formally identical to the generalized Itô differentiation rule in stochastic
calculus (StC), wheref, g are semimartingales and the third term in (1.5) is the so-called bracket
of the processes, related to their quadratic variation ([21], equation (4) of the appendix). In fact,
it can be shown that this is not merely a formal analogy; more precisely, a non-commutative
product can be easily defined for semimartingales and their differentials, so that the stochastic
differentiation rule becomes identical to (1.5) ([9], section 3). In this way one can obtain results
of StC by employing techniques of NCG (see, e.g., [22], section 3 for the Ornstein–Uhlenbeck
process).

Motivated by the above remarks, one may develop differential geometry on the basis of a
minimal deformation of the usual DC, namely, a calculus in which

df • dg • dh = [[dh, g], f ] = 0 (1.6)

and explore its relation to StC (a different approach for quantum systems is developed in [23]).
Further motivation for this, stems from the following remarks.

From a physical point of view, StC is a mathematical formalism on the basis of which
a precise meaning can be given to stochastic dynamical models of physical systems whose
time evolution cannot be given in terms of deterministic flows in their phase space (e.g.

† From now on we write �r instead of �r(A) and the symbol ‘:=’ indicates a defining relation for the object that
lies on the side of ‘:’.
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Brownian motion). These are systems for which the concept of a trajectory in phase space is
not defined. Mathematically speaking, their evolution cannot be described by semigroups of
Perron–Frobenius operators, since their states often evolve under a second-order differential
operator (differential operators can generate Perron–Frobenius semigroups only if they are of
first order, see, e.g., [24], chapter 7). The appearance of such operators is a basic feature of StC
(via Itô’s formula). In this way, by appropriate generalizations of basic geometrical concepts
in the context of StC, a general mathematical framework results for the description of such
non-deterministic systems [21]. On the other hand, second-order evolution equations are at
the heart of kinetic theory, for describing time-irreversible evolution towards equilibrium; they
are obtained by employing some approximation scheme to the time-reversible microscopic
dynamics.

Taking account of the above discussion and starting with (1.6), we have formulated
basic concepts of differential geometry, tensor calculus and symplectic mechanics in a non-
commutative context and we have shown that Hamiltonian equations for observables are
(adjoint to) generalized Fokker–Planck (FP) equations like those encountered in Itô’s StC
and the kinetic theory of open systems [13, 15].

These are suggestive mathematical developments for the relevance of NCG to StC and
kinetic theory. However, from a conceptual point of view, the physical meaning of non-
commutativity has to be made clearer, particularly in connection with the time evolution of
physical systems. On this issue, a basic intuitive idea is that non-commutativity is due to the fact
that differentials (i.e. 1-forms) have a ‘size’, so that different results are obtained when functions
are evaluated at the left-hand side of the 1-form (its multiplication by functions from the left) and
at the right-hand side of it (multiplication from the right); cf [13], section 6. On the other hand,
second-order FP equations result in the context of kinetic theory (based either on microscopic
dynamics or stochastic models), by assuming that, although individual microscopic interactions
happen on a time-scale which is very short compared with the (macroscopic) relaxation time of
the system as a whole, yet this microscopic time-scale is long enough to allow for many changes
in the microscopic configurations of the system (see, e.g., [25], sections II.1, II.4 and [26],
chapter IX.4). Therefore, although eventually one passes to the limit of a continuous description
in terms of macroscopic kinetic equations, the fine structure of the system on the ‘infinitesimal’
microscopic time-scale has already been taken into account. This is a methodology widely used
in statistical mechanics and kinetic theory; to start from a discretized picture of the system and
subsequently to pass to a continuous macroscopic description in some appropriate limit (e.g.
the thermodynamic limit, with appropriate scaling of the physical quantities [27], chapter 3.3,
[28], section I, [29, 30], chapter III).

On the basis of this, we may try to develop a discrete analogue of the formalism in [13, 15],
aimed at the following:

(a) to throw more light on the physical meaning of non-commutativity of the DC;
(b) to better understand the similarity of the DC to StC; and
(c) to provide a method for deriving irreversible evolution equations, which describe non-

deterministic motions and which can be given a probabilistic interpretation, as exact rather
than approximate results, much in the spirit of [13], section 1, and in contrast to the general
methodology underlying statistical mechanics (cf the discussion in [13], section 1†).

† Note that, implicit to the derivation of kinetic equations by approximating microscopic dynamics, is the assumption
that the higher the approximation, the better are the resulting equations. However, this usually leads to differential
equations of higher than second order, in direct conflict with the fact that at least for linear autonomous equations,
it is known that only differential operators of order at most two can generate semigroups of solutions admitting a
probabilistic interpretation [31].
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In this connection, the techniques developed in [11, 17] for NCG on discrete sets will be used,
since, on the one hand, they allow for a clear geometric representation of non-commutative
DC and, on the other hand, they are conceptually closer to those used in the study of specific
models in stochastic dynamics or statistical mechanics†.

In view of the above, here we will show how simple model kinetic equations can be derived
in the context of DC on a discrete set, having a threefold aim:

(i) from the conceptual point of view, to clarify the relevance of non-commutative DC to
kinetic theory and more generally, to the description of physical systems in terms of
irreversible evolution equations;

(ii) since in kinetic theory and StC, probabilistic concepts are central, to explain how such
concepts could naturally arise in the context of DC applied to systems conventionally
studied by kinetic theory and stochastic dynamics;

(iii) in analogy with classical dynamics, to formulate a general prescription for what dynamical
evolution means in a formalism based on NCG.

More specifically, the paper is organized as follows. The basic ideas in this section and
the above general aims of the paper, are already apparent in the one-dimensional (1D) model
considered in section 2. This fact suggests the line of approach in the subsequent sections.
The basic ideas are introduced systematically in section 3. Specifically,

(a) the extended phase space as a discrete set, in particular, a hypercubic oriented lattice,
(b) vector fields as generators of motion and probability distributions,
(c) the emergence of the time direction on the basis of the encoding of probabilities in the

lattice structure of the extended phase space,
(d) the general prescription of the evolution equation for observables, in direct analogy with

conventional dynamics.

In section 4 we apply the previous ideas and results to 1D problems, thus incorporating random-
walk models in our context and accordingly showing how the diffusion, Smoluchowski and
FP equation in velocity space, result in the continuous limit. In section 5 the approach of
section 4 is generalized in N dimensions, giving in the continuous limit a generalized FP
equation in which: (1) the diffusion matrix is non-negative-definite and is the limit of the
correlation matrix of the lattice, with respect to the probability distribution associated with the
vector field which is the generator of motion; (2) the drift terms are specified by the dynamics
of the particular problem under investigation. Some comments on the form and properties of
the transformations in phase space, are given in section 6. In section 7 the results of section 5
are applied to the two-dimensional (2D) case. As an example, Kramers’ equation is derived
by assuming Newtonian equations of motion with friction, and requiring that in the continuous
limit, motion in coordinate space is deterministic (i.e. trajectories exist there). In section 8
the nature and mathematical properties of the limiting procedure used in this paper and of
other such procedures, are examined, showing that only the limit used here is well defined
for all possible (first-order) differential structures on the lattice. Moreover, if the conceptual
framework of section 3 is employed, then we show that the only differential operators which
can be generators of evolution of observables are at most of order two. Finally, in section 9
we summarize our results and discuss the main ideas involved, as well as further possible
elaborations in the present context.

† Though formalisms based on the ‘continuum’, more often than not can be manipulated mathematically more easily
than formalisms based on discrete methods, the latter often provide deeper conceptual insights.
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2. A one-dimensional model: motivation for further developments

As already mentioned in section 1, there is a formal similarity between the Leibniz rule in non-
commutative DC, equation (1.5), and stochastic differentiation. Actually, in [9], it was shown
that Itô’s stochastic differentiation can be made an exterior derivative in non-commutative DC.
In this section we explore further this issue by means of a simple 1D discrete model, following
the rationale of section 1. Specifically, we consider a point moving in one dimension x, so that
motion can be described in R

2 with local coordinates (t, x), equipped with a DC having the
following commutation relations (t is the time; for the choice of the signs see section 3.4):

dt • dt = −b dt dx • dx = −h dt dt • dx = −b dx h, b > 0 (2.1)

and we assume that {dt, dx} form a basis of 1-forms. Associativity of • implies that

dx • dx • dx = a2 dx a2 := hb (2.2)

so that in the limit a, b → 0, a2/b → h = constant, we recover in one dimension, the DC
of [9], section 5, [13], section 4, in close analogy with Itô’s StC and with the commutation
relations

dt • dt = dt • dx = 0 dx • dx = −h dt. (2.3)

It is a special case of the DC defined by (1.6). With the transformation

u = 1

2

(
x

a
− t

b

)
v = −1

2

(
x

a
+
t

b

)
⇔ t = −b(u + v) x = a(u− v) (2.4)

equation (2.1) becomes

du • du = du du • dv = 0 dv • dv = dv (2.5)

which is the DC on an oriented square lattice. Hence, from (1.3) we easily obtain

df = (f (u + 1, v)− f (u, v)) du + (f (u, v + 1)− f (u, v)) dv (2.6)

so that a direct calculation using (2.6) gives

df (t, x) = ∂̄xf (t − b, x)dx +
(
∂−t f (t, x)− 1

2h�xf (t − b, x)
)

dt (2.7)

where

(∂̄xf )(t, x) := f (t, x + a)− f (t, x − a)
2a

(2.8)

(∂−t f )(t, x) := f (t, x)− f (t − b, x)
b

(2.9)

(�xf )(t, x) := f (t, x + a) + f (t, x − a)− 2f (t, x)

a2
. (2.10)

In the limit a, b→ 0, a2/b→ h = constant, equation (2.7) becomes

df (t, x) = ∂xf (t, x) dx +
(
∂tf (t, x)− 1

2h∂
2
x f (t, x)

)
dt (2.11)

recovering in 1D the results of previous works ([13], equation (4.13), [9], equation (5.3), [22],
equation (5.1)) and essentially Itô’s formula for the differential of a function of a Wiener
process with variance h.

In order to explore this similarity further, we consider the (free) motion of a point in this
context, by introducing the concept of a differentiable motion in analogy with the ordinary
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DC. To this end, let (R, s, d′) be a discrete DC on R (where s is a coordinate function on R

parametrizing this motion), defined by

d′s • d′s = −b d′s. (2.12)

Then, we define a differentiable motion to be a mapping

γ : R → R
2 γ (s) = (t (s), x(s)) (2.13)

inducing a ‘pull-back’ homomorphism γ ∗ on �1(R2, d) to �1(R, d′) with†

γ ∗(x) = x(s) γ ∗(t) = t (s) γ ∗ ◦ d = d′ ◦ γ ∗. (2.14)

Equation (2.13) implies

γ ∗(dx) = x(s)− x(s − b)
b

d′s =: ẋ(s) d′s

γ ∗(dt) = t (s)− t (s − b)
b

d′s =: ṫ (s) d′s.
(2.15)

Applying γ ∗ to the commutation relations (2.1) and (2.2), we obtain the following consistency
relations:

b ẋ2(s) = h ṫ(s) b ẋ(s)ṫ(s) = b ẋ(s) b ṫ2(s) = b ṫ(s). (2.16)

Therefore, with ẋ(s) = 0, ṫ(s) = 0 to avoid trivial cases, we obtain ṫ = 1, ẋ = ±a/b, hence

x(s)− x(s − b)
b

= ±a
b
. (2.17)

The following remarks can be made here.

(i) Motion consists of jumps ±a in discrete time intervals b, i.e. (2.17) gives the discrete
velocity of the point. In the continuous limit which leads to Itô’s StC, equation (2.17)
becomes infinite, strongly suggesting the picture of Brownian motion as a random walk
with equal left and right probabilities of jumps±a at time intervals b and diffusion constant
a2/b (see, e.g., [25], equation (17), [32], equation (7)).

(ii) The DC defined by (2.1) is up to a coordinate transformation the DC on an oriented square
lattice (cf (2.4)).

If the model is to be taken seriously, then these remarks raise the following issues.

• How can probabilistic concepts be introduced, given that no such concepts appeared
above? In other words, is there some deeper reason for the formal similarity of the model
with a random walk, which may lead to the introduction of probabilities at a fundamental
level?

• The above model corresponds to 1D free motion. How can it be generalized to higher
dimensions and/or other models? That is, what is the general prescription of time evolution
in the context of non-commutative DC?

These questions correspond to the general aims of the paper, expressed in section 1 and
are discussed in the next section.

† More generally, a mapping φ : (�′(A), d′) → (�(A), d) between two DCs, is called differentiable, if it is a
homomorphism of �′(A) to �(A) and φ ◦ d′ = d ◦ φ (see [12], section 4).
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3. Basic ideas and general formalism

In section 1 we noted that in statistical mechanics and kinetic theory, one often starts from
a discrete picture of the system under consideration, either for methodological reasons, or
because at the microscopic level these systems are in some fundamental sense discrete (e.g.
composed of a number of particles). This idea also appears in other areas, such as lattice field
theory (e.g. [33], chapter 8), or certain approaches to quantum gravity (e.g. [34, 35], see also
[36, 37] for recent reviews, and references in [12], section 1). Therefore, motivated by the
discussion in sections 1 and 2, we start with a discrete (finite or denumerable) set M, which
we call the ‘phase space’ and eventually pass to the special case of an oriented hypercubic
lattice Z

N+1. We will use the concepts and techniques developed in [11, 12, 17], a summary
of which is given below. At this point we stress that, as explained in section 3.1, starting
with a discrete picture has far-reaching consequences, since any differential structure on M is
necessarily non-commutative, i.e. discretization implies non-commutativity of the DC on M.
Thus, the need for, or necessity of, a discrete description of physical objects, can be seen as a
basic motivation (or explanation!) for introducing non-commutative differential structures in
the study of physical systems.

3.1. Differential calculi on a discrete set: a summary

Let A be the algebra of C-valued functions on M, with the usual algebraic operations. Then,

f =
∑
i∈M

f (i)ei =:
∑
i∈M

fiei ∀f ∈ A ei(j) := δij ei ∈ A (3.1)

eiej = δij ei (3.2a)∑
i

ei = 1. (3.2b)

We introduce a DC on A as in section 1. By defining

eij :=
{
ei dej i = j
0 i = j

(3.3)

so that

f eij = fi eij eij f = fj eij (3.4)

we obtain ei dei = −
∑
j =i eij and consequently

dei =
∑
j

(eji − eij ). (3.5)

On the basis of this we can prove that {eij } is linearly independent and a basis of �1 taken as
a vector space over C. In particular,

df =
∑
i,j

(fj − fi)eij df • eij = (fj − fi)eij eij • ekl = δikδjleij ∀f ∈ A.

(3.6)

It can be proved ([11], section II) that eij induce a basis on �r , r � 2 over C via

{ei0···ir | ei0···ir := ei0i1ei1i2 · · · eir−1ir }. (3.7)
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Therefore, there is a simple way to obtain any particular DC on A simply by imposing relations
among the eij , which turn out to be equivalent to setting some of the eij equal to 0. This implies
additional form relations for r � 2. Actually, the DC defined by (3.3) and (3.7) is the largest
one, called the universal DC on A. At this point it is conceptually suggestive to note that eij
with i = j may be represented as an arrow from i to j , i � j . Then, universality means that
all pairs of points of M are connected by two antiparallel arrows and any DC on A is obtained
by simply discarding some arrows from this complete di-graph (namely directed graph). In
this representation, equation (3.5) gives

dei = (sum of incoming arrows)− (sum of outgoing arrows) at i

and similar interpretations hold for (3.7). Moreover, equation (3.4) shows that left (right)
multiplication of 1-forms eij by functions, implies that functions are evaluated at the starting
(end) point of the corresponding arrow. This proves that any non-trivial DC on a discrete set
M is necessarily non-commutative, since at least one eij is non-zero so that df • eij is not
identically zero. Actually, this quantity is (proportional to) the change of f along the arrow
i � j . These remarks are important for what follows in this section.

3.2. Vector fields on a discrete set M
Vector fields X on A are elements of the A-bimodule X (A) dual to �1, defined by

〈fω, gX · h〉 := fg〈ωh,X〉 f, g, h ∈ A ω ∈ �1 (3.8)

where 〈 , 〉 denotes a duality contraction with �1 considered as a left A-module.
By (3.8), vector fields act as operators on A

X(f ) := 〈df,X〉 (3.9)

hence by (3.8) and the Leibniz rule

(fX)(g) = fX(g) (X · f )(g) = X(fg)− gX(f ). (3.10)

We define elements {∂ij } ∈ X (A), ‘dual’ to {eij }, by

〈eij , ∂kl〉 = δikδjlei (3.11)

(putting ∂kk = 0). A direct calculation, using (3.11) and (3.4), gives

ek∂ij = δik∂ij ∂ij · ek = δjk∂ij (3.12)

so that

∂ij · f = f (j)∂ij f ∂ij = f (i)∂ij ∂ij (f ) = (f (j)− f (i))ei . (3.13)

Hence for any X ∈ X ,

X =
∑
i,j

Xij ∂ij X(f ) =
∑
i,j

(fj − fi)Xij ei Xij ∈ C (3.14)

and we may write X as an ordinary difference operator X =∑i,j X
ij ∂ij =:

∑
α X

α∂α , where
α is an index for the arrows of the di-graph. The following proposition plays an important role
in this paper and its proof is straightforward.
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Proposition 3.1. Let I be the identity mapping on A. Then φ : A → A is an endomorphism
of A, if and only if

X := φ − I (3.15)

satisfies

X(fg) = g X(f ) + f X(g) +X(f )X(g). (3.16)

We remark here that X, in general, is not a vector field on M. Nevertheless, equation (3.13)
readily implies that ∂ij (equivalently, ∂α), satisfy (3.16). Using this, we easily prove the
following.

Proposition 3.2. A vector field X ∈ X (A) generates an endomorphism φ via (3.15), if and
only if

X =
∑
α

Xα∂α (3.17a)

with

XαXβ − δαβXα = 0. (3.17b)

Equation (3.17) simply means that at each point of M, at most one of the Xα is non-zero and
equal to 1. By (3.16) and (3.17),X is the generator of a discrete semigroup of endomorphisms
of A, {φn = (I +X)n, n ∈ N}.

As shown in appendix A.1, φ is an automorphism, if and only if it induces a one-to-one
and onto mapping% : M → M. In this case, φ is essentially the Koopman operator associated
with % and maps the basis {ei | i ∈ M} onto itself (see, e.g., [24], section 3.3). Therefore, the
orbits of the semigroup generated byX in (3.17) are determined by the trajectories of points of
M under% (i.e. the flow defined by%), which may be thought of as lying along arrows of the
di-graph corresponding to the DC on M (note that by the remark above, at each point of M at
most one term in (3.17a) is non-zero, and by (3.13) each ∂ij gives the change of functions along
the arrow i � j ). Thus, vector fields generating automorphisms of A, define flows on M
along arrows of the di-graph that map points of M to points of M. In this picture, stemming
from the discrete character of M, motion along a trajectory defined by a vector field X, is
constrained to be along arrows of the di-graph, so that at each point i of M (i.e. the vertex of
the di-graph), motion along any arrow is either certain or impossible, depending on X.

The above discussion raises naturally the question what kind of ‘motion’ is described by an
arbitrary vector field, i.e. one not necessarily satisfying (3.17)? Evidently, {ei} (equivalently,
M) is no longer mapped onto itself, but to a set of non-trivial linear combinations of the ei’s,
that is, to a ‘superposition of points’ (cf [7], section 3). This reminds one of the situation
in statistical mechanics; non-unitary semigroups of operators on the state space, transform
pure states into mixtures in the quantum case and δ-distributions into more general ones in the
classical case.

On the basis of this analogy and the discussion in the previous paragraph, we shall interpret
a vector field X as the generator of evolution on M, having at each point a particular well
defined probability associated with each arrow that emerges from that point. More precisely, in
this interpretation, the componentXij ofX gives the transition probability for the ‘infinitesimal’
motion from i to j .

In this picture, vector fields X acquire a double role; as generators of evolution and
as states giving the transition probabilities for ‘infinitesimal’ changes. This double role is
reflected in the notation of (3.9) so that 〈df,X〉 = X(f ) is the expectation (average) value for
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the ‘infinitesimal’ change of the observable f along X (cf (3.14)). It is a key idea following
from adopting a discrete structure as our starting point. More precisely, though both in the
discrete and the usual continuous case, vector fields are linear combinations of first-order
difference and differential operators, respectively, it is only in the continuous case that any
such combination generates automorphisms of the algebra of functions, or equivalently, flows
of trajectories (i.e. what we call here a deterministic evolution, or motion). This is due to the
fact that, in contrast to the continuum, non-trivial linear combinations of displacements do not
give a permissible displacement on the di-graph. In the rest of this section we shall pursue this
idea further.

3.3. The oriented hypercubic lattice and vector fields on it

To be more specific and for applications in subsequent sections, we shall henceforth take M
to be an oriented hypercubic lattice; that is, M = Z

N with elements �k ∈ M and

e�k�l = 0 ⇔ �l = �k + µ̂ µ̂ := (δνµ) (3.18)

where {µ̂} is the canonical basis of R
N (for details see [11]). Then, by defining

uµ :=
∑
�k
kµe�k (3.19)

and writing u := (uµ), we obtain for f ∈ A
f =

∑
�k
f (�k)e�k = f (u) (3.20)

so that from (3.6) and (3.14) we obtain

duµ =
∑
�k
e�k,�k+µ̂ (3.21)

df =
∑
�k,µ
(f (�k + µ̂)− f (�k))e�k,�k+µ̂ =

∑
µ

(f (u + µ̂)− f (u)) duµ

=:
∑
µ

(∂+uµf ) duµ (3.22)

∂+uµ =
∑
�k
∂�k,�k+µ̂ (3.23)

where we use the same symbol for f as a function of �k and of u, to avoid a cumbersome
notation.

Clearly, {duµ} is a basis for 1-forms with a dual basis for vector fields {∂+uµ}

X =
∑
�k,µ
X
�k,�k+µ̂ ∂�k,�k+µ̂ =:

∑
µ

Pµ∂+uµ P µ =
∑
�k
X
�k,�k+µ̂e�k (3.24)

〈duµ, ∂+uν 〉 = δµν duµ • duν = δµν duµ (3.25)

with the last relation following from (3.6).
The interpretation of vector fields as states giving transition probabilities, discussed in the

previous subsection is manifested in (3.24); X�k,�k+µ̂ is the transition probability at a point �k in



Non-commutative phase space and kinetic equations 5277

the direction of the axis uµ, so that Pµ is the distribution of this probability on M. Therefore,
from now on we consider vector fields X such that

Pµ � 0
∑
µ

Pµ = 1. (3.26)

Thus, in view of (3.22) and (3.25), 〈df,X〉 gives at each point of M, the expectation of df (the
‘infinitesimal’ change of f ), alongX, with respect to the probability distribution determined by
X. To see that this interpretation is consistent and for later use as well, we note the following:
the left-hand side of (3.17b) is rewritten for an arbitrary X =∑µ P

µ∂+uµ as

Pµν := δµνP µ − PµP ν = 〈duµ • duν,X〉 − 〈duµ,X〉〈duν,X〉 (3.27)

where (3.25) has been used. (P µν) is the correlation matrix of the N -dimensional random
variable (duµ) having a probability distribution (determined by) X, where • is the natural
(intrinsic) product of 1-forms. Pµν vanishes if and only ifX generates a flow of trajectories in
M. Actually, at �k ∈ M, Pµν(�k) is the correlation matrix of the following random variables:

Iµ(�k) =
{

1 if change at �k is along the uµ-axis

0 otherwise

with probabilities Pµ(�k) (cf [38], section 3.3, p 331).
The following proposition has an interesting probabilistic interpretation to be used later

on:

Proposition 3.3. For ω =∑µ sµ duµ ∈ �1, write st = (sµ) (row vector). Then

〈ω • ω,X〉 − (〈ω,X〉)2 = stPs (3.28)

with P = (P µν). Moreover, for

ρ :=
∑
µ

duµ =
∑
�k,µ
e�k,�k+µ̂ (3.29)

we have

ρ • ω = ω ∀ ω ∈ �1 (3.30)

〈ρ • ρ,X〉 − (〈ρ,X〉)2 = 0 (3.31a)

〈ρ • ω,X〉 − 〈ρ,X〉〈ω,X〉 = 0 ∀ ω ∈ �1 (3.31b)

Pµν = 〈(duµ − 〈duµ,X〉ρ) • (duν − 〈duν,X〉ρ),X〉. (3.32)

The proof can be immediately found, but we stress the fact that, for (3.31) it is essential that∑
µ P

µ = 1.
Equation (3.32) is an equivalent expression of (3.27), obtained by using the unit ρ with

respect to the natural multiplication • of 1-forms. On the other hand, in the present conceptual
framework, equation (3.28) gives the variance of the random variable (sµ) (and for that matter,
of ω) having a probability distribution X. Thus (3.31) says that the unit of (�, •) has zero
variance and is uncorrelated to all ω ∈ �1. Thus, as a random variable, ρ is constant, a fact
that will be used in the next subsection. Algebraically, (3.31b) says that P always has a zero
eigenvalue and a corresponding 1D eigenspace {λ(1, 1, . . . , 1), λ ∈ R}. It is easily seen that
this is the only generic eigenspace of zero, in the sense that it is the only one existing at all
points of M.
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3.4. The concept of time

As already mentioned at the beginning of this section, we consider M to be the extended phase
space, in the sense that it contains the ‘time axis’. Adopting a Newtonian picture we require:

(a) for every evolution (e.g. motion) in M, a change of time is required;
(b) time flows with certainty, that is, there is always a change in the time axis.

Then, if any evolution on M is determined by some vector field X, then (a) means that the
time change is given by 1-forms τ such that 〈τ, ∂+uµ〉 = 0 at all points of M. Moreover, in
view of the discussion following proposition 3.3, (b) implies that

τ = bρ = d

(
−b

∑
µ

uµ
)
=: dt 〈dt, X〉 = −b

dt • dt = −b dt b ∈ R
+

(3.33)

so that (a) is also satisfied.

(i) Since uµ, Pµ are dimensionless, b is used for dimensional reasons.
(ii) By the interpretation of vector fields X both as generators of evolution and states,

X(f ) = 0 should describe the evolution of observables in the extended phase space.
Then, as explained in appendix A.2, X(t) should be negative, in analogy with classical
dynamics, hence the choice of the (−) sign in (3.33).

3.5. General prescription of dynamical evolution

In summary, the approach described in this section leads to a general prescription for time
evolution in M:

• M is taken to be the extended phase space (cf section 3.4);
• via (3.9), vector fields X are seen both as generators of evolution and as states giving the

transition probabilities for ‘infinitesimal’ changes (cf sections 3.2 and 3.3);
• time change appears in steps of duration b.

Therefore, elements f of A are observables, whose ‘infinitesimal’ change has an expectation
value with respect to X, 〈df,X〉 = X(f ). However, then, by remark (ii) in section 3.4 and
appendix A.2,−X(f )/b gives the rate of change of f alongX in extended phase space, hence,
in analogy with classical dynamics, we take as the general dynamical evolution equation

evolution equation for observable f : −X(f )
b

= 0 (3.34)

which becomes with the aid of (3.22) and (3.24),

−1

b

∑
µ

Pµ(u)(f (u + µ̂)− f (u)) = 0. (3.35)

Equation (3.34) is a general prescription, independent of the choice of M as an oriented
hypercubic lattice. Nevertheless, it is our starting point in the applications in the next sections.
As we shall see there, in the continuous limit, equation (3.35) reduces in particular cases to
the adjoint of well known kinetic equations, i.e. to evolution equations for observables.
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4. One-dimensional problems

It is quite straightforward to apply the general ideas and results of section 3 to specific cases.
To keep technical details to a minimum, we consider in this section as an illustration, the
derivation of well known 1D model evolution equations and leave the general treatment to the
next sections.

Motivated by section 3.4 and the model of section 2, we consider a coordinate system (t, x)
in the notation of section 2. Although the transformation from the lattice axes to (t, x) can
be any invertible transformation, we postpone this until the next section and use ‘lightcone’
coordinates defined by (2.4). Then, for f ∈ A, df is given by (2.7). On the other hand,
equation (3.24) is

X = p∂+u + q∂+v = 〈du,X〉∂+u + 〈dv,X〉∂+v

=
(∑

�k
X
�k,�k+1̂e�k

)
∂+u +

(∑
�k
X
�k,�k+2̂e�k

)
∂+v (4.1)

where p, q � 0 and p + q = 1. Using (2.7) in (3.34) and that p + q = 1, we readily obtain the
evolution equation

−X(f )
b

= (∂−t f (t, x)− 1
2h�xf (t − b, x)

) 〈dt, X〉
−b + ∂̄xf (t − b, x) 〈dx,X〉−b

= (∂−t f (t, x)− 1
2h�xf (t − b, x)

)− a
b
(p − q)∂̄xf (t − b, x) = 0. (4.2)

In the derivation of (4.2), we remark that the following features are present in any number of
dimensions (see, e.g., section 5 and appendix B).

(a) Because of (3.26), 〈dt, X〉 = −b.
(b) Second-order difference operators appear only in the coefficient of dt .
(c) The term involving 〈dx,X〉 = X(x) has the form of a drift term.

More precisely, 〈dx,X〉 has been interpreted in section 3.5 as the ‘infinitesimal’ change of x in
one step of time b, hence it is natural to assume that it is proportional to b. This assumption can
be justified on the basis of the general approach described in section 5 (see (5.13), the derivation
of (5.15) and appendix A.3). Since we eventually pass to the continuous limit considered in
section 2, namely a, b→ 0, a2/b→ h = constant, we have

〈dx,X〉 = a(p − q) = o(b) ⇒ p − q = o

(
a

h

)
= o(a) (4.3)

and therefore

〈dx,X〉
b

= a

b
(p − q)→ R (4.4)

say, when a, b→ 0, a2/b→ h, so that in this limit, (4.2) becomes

∂tf − R∂xf − 1
2h∂

2
x f = 0. (4.5)

To see the physical meaning of this evolution equation, we go back to (3.24) and consider two
special cases.



5280 A Dimakis and C Tzanakis

Figure 1. Coordinate transformation on the square lattice,

4.1. X�k,�k+1̂, X
�k,�k+2̂ are constant

Then from (4.1) and (4.3)

X
�k,�k+1̂ = p =: 1

2 − γ a X
�k,�k+2̂ = q =: 1

2 + γ a γ = constant. (4.6)

As is evident from figure 1, p, q represent the transition probability for right and left motion,
respectively, along the x-axis. This is a random-walk model in 1D position space and in view
of (4.2), the evolution equation in the continuous limit, is

∂tf + 2γ h∂xf − 1
2h∂

2
x f = 0. (4.7)

This is the adjoint of Smoluchowski’s equation for a constant force field, of intensity
proportional to γ and diffusion constant h, derived here in a conceptual framework totally
different from that used conventionally (e.g. the theory of Markov processes; see [32],
section 3).

4.2. Evolution in velocity space

Here x represents the velocity of a particle and we take (cf (4.3))

X
�k,�k+1̂ = 1

2 − βb(k1 − k2) X
�k,�k+2̂ = 1

2 + βb(k1 − k2) β = constant > 0 (4.8)

hence by (3.24) and (2.4)

p = 1
2 − βb(u− v) q = 1

2 + βb(u− v) p − q = −2
b

a
βx (4.9)

so that in the continuous limit, equation (4.2) gives

∂tf + 2βx∂xf − 1
2h∂

2
x f = 0. (4.10)

This is the adjoint to the 1D FP equation in velocity space, giving the Ornstein–Uhlenbeck
process (diffusion constant h, drift coefficient β). We may remark, however, that if x is
interpreted as a position coordinate, then (4.10) is the adjoint to the Smoluchowski equation
for a harmonic external field (cf [32], section 4).
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5. Evolution equation: the general case

In this section we apply the results of section 3 in the case of an (N + 1)-oriented hypercubic
lattice M.

The lattice coordinates uµ are dimensionless. We consider linear coordinate
transformations to physical coordinates

xµ = aµ
∑
ν

Aµν u
ν µ, ν = 0, 1, . . . , N (5.1)

in which aµ are scaling parameters with the dimensions of xµ. In view of section 3.4 we
require that

x0 = t hence a0 = −b A0
µ = 1 (5.2)

and we shall eventually consider the continuous limit

aµ→ 0
aiaj

b
→ hij

ai

b
→±∞ Aµν → Âµν (5.3)

with the Aµν depending on the aµ’s, in general. Equation (5.3) is motivated by the limiting
procedure considered in [13, 15] and section 2 here. Nevertheless, its nature is further explored
in section 8. Here we only note that, in contrast to (t, xi), the uµ are not defined in this
limit. Moreover, to avoid a too technical development, we restrict the discussion to linear
transformations with constant coefficients, thus making the physical and conceptual aspects
of our approach clearer. In what follows, Latin indices run from 1 to N , Greek ones from 0 to
N and symbols with a hat denote quantities in the limit (5.3).

By eq5.1 we can write

uµ =
∑
ν

Bµν
xν

aν

∑
ν

Aµν B
ν
ρ = δµρ Bµν → B̂µν (5.4)

so that (3.22) and (3.25) become, with the aid of (2.9),

df = (∂−t f (t, x)− 1
2�f (t − b, x)

)
dt +

∑
i

∂̄if (t − b, x) dxi (5.5)

where

∂̄if (t, x) := 1

ai

∑
µ

f (t, xj + ajA
j
µ)B

µ

i (5.6)

�f (t, x) := 2

b

(∑
µ

f (t, xj + ajA
j
µ)B

µ

0 − f (t, x)
)

(5.7)

and

dt • dt = −b dt dt • dxi = −b dxi

dxi • dxj = −aiaj
b

∑
µ

AiµA
j
µB

µ

0 dt +
∑
µ,m

aiaj

am
AiµA

j
µB

µ
m dxm.

(5.8)

With the interpretation of vector fields X given in sections 3.2 and 3.3, we consider those X
that satisfy (3.26), i.e.

X =
∑
µ

Pµ∂+uµ P µ � 0
∑
µ

Pµ = 1 (5.9)
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hence 〈dt, X〉 = −b, 〈dui,X〉 = P i . Therefore, the evolution equation (3.34) becomes (cf
(4.2))

−1

b
X(f ) = ∂−t f (t, x)− 1

2�f (t − b, x)−
∑
i

ai

b
(AP )i ∂̄if (t − b, x) = 0 (5.10)

where, by (5.1)

〈dxi, X〉 = ai (AP )i. (5.11)

With the interpretation of vector fields introduced in section 3, this is the average value of the
‘infinitesimal’ change of xi along X in one time step b. By assuming that f is a sufficiently
well behaved function, Taylor expansion of (5.10) around xi , gives

−1

b
X(f ) = ∂tf −

∑
i

ai

b
(AP )i ∂if − 1

2

∑
i,j

aiaj

b

(∑
µ

AiµA
j
µP

µ

)
∂i∂jf + o(a) = 0.

(5.12)

We proceed further in analogy with conventional dynamics. Let (Ri) be the generator
of motion in this case (e.g. in Newton’s or Hamilton’s equations). Then, as is explained
in appendix A.2, to the system of characteristic equations of the observables’ evolution
equation (A.3c), are associated the 1-forms

αi = dxi + Ri dt (5.13)

which vanish along the integral curves of the vector field that gives the dynamical evolution.
Therefore, in the present discrete context, we postulate the existence of dynamics in the

above sense, that is, the generator of dynamical evolution is determined by a similar relation,
namely

〈αi,X〉 = 〈dxi, X〉 + Ri〈dt, X〉 = 0 (5.14a)

hence

ai(AP )
i = bRi (5.14b)

(cf (A.5). Hence,

(AP )i = b

ai
Ri = ai

hii
Ri + o(a) with Ri → R̂i . (5.15)

Note that the postulated existence of dynamics, that is (5.14a), implies that 〈dxi, X〉 is o(b),
thus justifying this assumption which was introduced in the derivation of (4.4). It is also
equivalent to a similar relation determining the transition probabilities Pµ, as explained in
appendix A.3.

Since (AP )0 = 1 (because of (5.2) and (5.9)), we can invert (5.15) to obtain

Pµ = Bµ0 +
∑
m

am

hmm
BµmR

m hence in the limit P̂ µ = B̂µ0 (5.16)

so that by (5.9)∑
µ

B̂
µ

0 = 1 B̂
µ

0 � 0. (5.17)

Therefore, equation (5.12) can be rewritten as

−1

b
X(f ) = ∂tf −

∑
i

ai
2

hiib
Ri ∂if − 1

2

∑
i,j

ηij ∂i∂jf + o(a) = 0 (5.18)
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where

ηij := aiaj

b

∑
µ

AiµA
j
µB

µ

0 → η̂ij = hij
∑
µ

ÂiµÂ
j
µP̂

µ. (5.19)

In the continuous limit (5.3), we have

∂tf −
∑
i

R̂i∂if − 1
2

∑
i,j

η̂ij ∂i∂jf =: X̂f = 0. (5.20)

This is our general evolution equation for observables f , corresponding to the DC obtained
from (5.8) in the limit (5.3)

dt • dt = 0 dt • dxi = 0 dxi • dxj = −η̂ij dt. (5.21)

Equation (5.21) is identical with the DC considered in [13, 15], called second-order DC there,
because it leads to second-order evolution equations, i.e. (5.20). We shall come to this point
again in section 9.

A number of interesting remarks can be made here.

(1) If (5.17) holds, then η̂ij is a non-negative definite matrix, so that (5.20) is the adjoint of a
generalized FP equation with diffusion matrix η̂ijand drift vector R̂i .

(2) Under the transformation (5.1), the correlation matrix of the lattice, equation (3.27),
becomes

Hµν := (APAt)µν (5.22)

Hµ0 = 0

Hij =
∑
µ

aiajA
i
µA

j
µP

µ − aiaj (AP )i(AP )j = 〈dxi • dxj ,X〉 − 〈dxi, X〉〈dxj ,X〉

= 〈d(xixj )− xi dxj − xj dxi, X〉 − 〈dxi, X〉〈dxj ,X〉 (5.23)

where we have used the Leibniz rule (1.6).

• Hµ0 = 0 reflects the fact that the time change dt is the (essentially) unique eigenvector
of zero of P, as discussed in section 3.4.

• Because of (5.15), the last term on the right-hand side of (5.23) is o(ai4).
• Using the unit ρ of the algebra (�1, •), equation (3.29), we may write

Hij = 〈 (dxi − 〈dxi, X〉ρ) • (dxj − 〈dxj ,X〉ρ), X〉
(cf (3.32)). In fact, Hij is the correlation matrix of the 1-forms αi , equation (5.13),
associated with the equations of motion via (5.14)

Hij = 〈(αi − 〈αi,X〉ρ) • 〈(αj − 〈αj ,X〉ρ), X〉
= 〈αi • αj ,X〉 − 〈αi,X〉〈αj ,X〉
= 〈αi • αj ,X〉. (5.24)

Therefore, in the continuous limit we obtain

Hij

b
→ η̂ij = 〈dxi • dxj , X̂〉 = 〈d(xixj )− xi dxj − xj dxi, X̂〉

= X̂(xixj )− xiX̂(xj )− xj X̂(xi). (5.25)

Thus, η̂ij is essentially the limiting value of (the matrix of) correlations of ‘infinitesimal’
changes along the axes of the lattice, induced by the generator of evolution X. In fact,
by (5.22), η̂ij vanishes if X is the generator of a deterministic flow on the lattice, i.e.
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when the concept of a trajectory is well defined for X, as explained in section 3.3 (cf
(3.17)). This is reflected in the limiting equation (5.25), which gives the deviation of
X̂ from an ordinary derivation, that is, an ordinary vector field for which the concept
of a trajectory is (locally) always meaningful. We may also compare η̂ij with the usual
interpretation of the diffusion matrix in the kinetic theory of open systems. There, it
is the correlation matrix of the Hamiltonian vector field of the interaction Hamiltonian
of the open system with the bath, with respect to the state of the bath (see, e.g., [39],
equation (4.16)). A similar interpretation of this quantity exists in the theory of Marko-
vian stochastic processes and of Itô’s stochastic calculus (e.g. [40], chapters 3 and 4, [41],
chapter VIII).
On the other hand, the above comments provide an interpretation of the non-commutativity
of the DC defined by (5.21) and studied in previous works [13, 15]. Starting with a discrete
structure of the phase space, somehow reflects the fact that originally one considers the
fine microscopic structure of the system. At this level, changes are described by structures
that are necessarily non-commutative and it is a generic characteristic of vector fields in
this case, not to describe deterministic motion (i.e. flows of trajectories), in contrast with
vector fields in the (ordinary) continuous case for which this is always the case. Then,
the passage to the continuous limit corresponds to a coarse-graining process, in which
the fine details of the micro-structure are no longer explicit, but which, nevertheless,
have been taken into account. In particular, the above generic characteristic of vector
fields on a discrete phase space is expressed quantitatively in the continuous limit, by the
non-vanishing of η̂ij , equation (5.19).

(3) In (1) above, it was mentioned that (η̂ij ) is non-negative-definite (being the limit of such
matrices). On the other hand, it is an easy matter to see that for such a matrix, η̂ii = 0 for
some fixed i implies η̂ij = 0 for all j†. In our case, this means that with respect to xi , X̂
in (5.20) is a derivation, hence it describes deterministic motion along the xi-axis.

(4) The limiting equation (5.20) is the most general linear autonomous differential (evolution)
equation, whose adjoint admits a probabilistic interpretation; more precisely, under
mild regularity conditions on the coefficients, it defines a positivity and normalization-
preserving, strongly continuous semigroup, globally on the space of (continuous)
observables f having a finite limit at infinity. Its adjoint also defines a positivity and
normalization-preserving semigroup, satisfying a generalH -theorem ([31], theorems 5.1
and 6.1). This is ensured by the non-negative definiteness of η̂ij . In our case this follows
from (5.17), which is a consequence of the interpretation of a vector field as a transition
probability distribution for infinitesimal changes. Thus, if {∂̃t , ∂̃xi } is the basis of vector
fields dual to {dt, dxi}, then

B
µ

0 = 〈duµ,−b∂̃t 〉 = −b∂̃t (uµ) → B̂
µ

0 � 0.

Therefore, B̂µ0 � 0 means that in the limit of the continuum (i.e. in a macroscopic
description—see (2) above), changes in phase space are in the future direction (cf
the discussion following equation (A.3) in appendix A). Thus, in this picture, the
‘macroscopic’ direction of time is intimately related to a probabilistic interpretation of
evolution at the ‘microscopic’ level (here the terms ‘macroscopic’ and ‘microscopic’
correspond to the terms ‘continuous description’ and ‘discrete description’ in the sense of
(2) above).

(5) The expansion of the evolution equation (3.34) (or (5.10)) in powers of the ai is not
essential, but has been done because of the generality of the transformation (5.1). In

† (η̂ij ) defines a (possibly degenerate) non-negative-definite scalar product on R
N , and we apply the Schwartz

inequality to the ith element of the canonical basis of R
N with each j th element j = i.
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each particular case X(f ) may be written explicitly in terms of appropriate difference
operators, which in the continuous limit yield the corresponding FP equation (e.g. as in
section 4). Such an N -dimensional example is worked out in appendix B.

6. Transformations in phase space

There is considerable freedom in the choice of the coordinates (xi), equation (5.1), in such a
way that the continuous limit exists. In this section we comment briefly on this issue.

Let (xµ) and (x ′µ) be coordinate systems on M, obtained from the lattice coordinates by
a linear transformation like equation (5.1) and let x ′µ = 4µν xν . In view of the discussion in
sections 3.3–3.5, from a physical point of view we require that 4 leaves dt invariant. Then it
has the form

4 =
(

1 0
4i 4ij

)
. (6.1)

Such transformations form a group. Moreover, since dt is in the kernel of the correlation
matrix (Hµν), equation (5.22), 4 leaves the form of Hµν (i.e. Hµ0 = 0) unaltered:

H =
(

0 0
0 Hij

)
4−→ H ′ =

(
0 0
0 (4H4t)ij

)
. (6.2)

If we write (5.1) in the form

(uµ)
A−→
(
xµ

aµ

)
: A =

(
1 1
Ai Aij

)
(6.3)

where 1 = (1, 1, . . . , 1), then

H ′ = (4A)P(4A)t . (6.4)

A natural (partial) fixing of the coordinate freedom is to choose4 so that the correlation matrix,
hence η̂ij in (5.20), is diagonal. However, many other possibilities exist, see, e.g., appendix B
and section 7.

7. Further applications: 2D evolution equations

As a concrete application of the results of section 5, which also exhibits the main features of
the general N -dimensional case, we consider in this section the general form of the evolution
equation (5.20) in two dimensions. Then, we show how evolution equations that are used in
statistical physics as model kinetic equations can be derived in the present context, at the same
time throwing some light on their foundations from a new perspective.

An example of this type is Kramers’ equation which for simplicity is considered here in
one spatial dimension x:

∂tρ + y∂xρ + F(x)∂yρ − β∂y(yρ)− 1
2h∂

2
yρ = 0. (7.1)

This is a kinetic equation for the probability distribution ρ of a (unit mass) Brownian particle of
velocity y in an equilibrium bath of temperature h/2β, where β is its friction (drift) coefficient
and F is an external force field.

Equation (7.1) can be derived from microscopic dynamics, e.g. by expanding the so-called
generalized master equation in powers of the ratio of the masses of the bath particles to that
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of the Brownian particle, for brevity taken here equal to 1 (see, e.g., [26], chapter IX.4, [42],
section 5). We note, however, that (7.1) has been extrapolated far beyond the usual model of
Brownian motion, namely, a heavy particle interacting via hard collisions with a bath of much
lighter particles (e.g. it has been used for self-gravitating systems, see the discussion in [44],
section 5 and references therein).

On the other hand, equation (7.1) is also obtained by using Langevin’s equation as a
dynamical model and assuming, that the motion of the particle is a Markov process, and that
motion along x is deterministic so that the dependence of the transition probability on x is a
δ-function (see, e.g., [25], equation (242), [26], chapter II.2, [41], section VIII.7). This is an
extra condition, the use of which is reflected in the derivation of (7.1) in the context of StC by
writing Langevin’s equation as a stochastic differential equation

dx = y dt (7.2a)

dy = −(βy − F(x)) dt + h dWt (7.2b)

where Wt is a standard Wiener process and no stochastic term appears in dx (see, e.g., [48],
theorem 9.3.1, [40], section 5.3.6, [43], section II.3). This extra condition is often justified by
saying that the external field varies slowly on a length scale in which the velocity is damped
(e.g. [41], p 232). Nevertheless, there is no generally accepted view on how (7.1) should
be generalized if this extra condition is relaxed, although second-order derivatives in x are
expected to appear on the basis of a systematic analysis of the microscopic dynamics of realistic
classical 3D models of Brownian particles weakly coupled to the bath ([45], section 2, [46]
section 4†). Such second-order derivatives are not easily accounted for by approaches based
on StC, since this presupposes the appearance of a stochastic term in the first of equations (7.2),
which is not easily justified from a physical point of view.

On the other hand, in [13, section 5] we have shown how such evolution equations
(including (7.1)) are formally incorporated as Hamiltonian equations in symplectic mechanics
developed in the context of the non-commutative DC defined by (5.21). Below we explore
the physical interpretation of this formal result by employing the techniques and conceptual
framework of the previous sections.

In the notation of section 5 we write for a (2 + 1)-dimensional system

(uµ) = (u, v,w) (xµ) = (t, x, y) (ai) = (a, ā)
P µ = (p, q, r) X =

∑
µ

Pµ∂+uµ
(7.3)

(Aµν ) =
( 1 1 1
κ λ µ

κ ′ λ′ µ′

)
. (7.4)

Then, by (5.11), (5.15) and (5.19), we have

X(x) = 〈dx,X〉 = a(κp + λq + µr) = a2

h11
Rx (7.5)

X(y) = 〈dy,X〉 = ā(κ ′p + λ′q + µ′r) = ā2

h22
Ry (7.6)

† The same conclusion follows from a similar analysis of quantum systems and by taking the classical limit of the
resulting equations; e.g. for a harmonic oscillator in a bath of oscillators. Such an analysis leads to a widely used
kinetic equation of the Lindblad type (i.e. conserving density matrices), whose classical limit is a FP equation involving
a drift and a diffusion term on the x-axis ([47], sections 3 and 4).
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η11 = a2

b
(κ2p + λ2q + µ2r) η12 = aā

b
(κκ ′p + λλ′q + µµ′r) (7.7)

η22 = ā2

b
(κ ′2p + λ′2q + µ′2r) (7.8)

where the limiting probabilities in the continuous limit (5.3) are readily found via (7.4) and
(5.16) to be

(p̂, q̂, r̂) =
(
λ̂µ̂′ − λ̂′µ̂
|Â| ,

κ̂ ′µ̂− κ̂µ̂′
|Â| ,

λ̂′κ̂ − λ̂κ̂ ′
|Â|

)
|Â| = det(Âµν ). (7.9)

Finally, the evolution equation (5.18) is

∂tf − a2

bh11
Rx∂xf − ā2

bh22
Ry∂xf − 1

2

(
η11∂

2
x f + η12∂

2
xyf + η22∂

2
y f
)

+ o(a, ā) = 0. (7.10)

Now suppose that (x, y) are the phase space coordinates of a particle, moving under friction
linear in the velocity y, say −βy, and an external field F(x). Evidently, the generator of
Newtonian motion is (y,−(βy − F(x)) and therefore as in section 5 (cf (5.13)) we may
introduce the 1-forms

α1 = dx + y dt α2 = dy − (βy − F(x)) dt.

Consequently, equation (5.14), giving the ‘infinitesimal’ changes of (dx, dy) in time dt ,
becomes 〈αi,X〉 = 0, i = 1, 2, hence

〈dx,X〉 = by = bRx 〈dy,X〉 = −b(βy − F(x)) = bRy (7.11)

and in the limit

Rx = R̂x = y Ry = R̂y = −(βy − F(x)). (7.12)

If motion along x is deterministic in the continuous limit, that is, the concept of a trajectory in
x is meaningful, then by the remark (3) in section 5, this is equivalent to

η̂11 = 0 (hence η̂12 = 0) that is κ̂2p̂ + λ̂2q̂ + µ̂2r̂ = 0. (7.13)

This corresponds to the absence of a stochastic term in (7.2a). Since p̂, q̂, r̂ are non-negative,
it is readily obtained from (7.13) and (7.9) that up to a permutation of the lattice coordinates
(u, v,w) (hence of (p, q, r)), there are two possibilities.

(1) q̂ = r̂ = 0, p̂ = 1, κ̂ = κ̂ ′ = 0 implying η̂22 = 0, λ̂µ̂′ − λ̂′µ̂ = 0. Then, equation (5.20),
the evolution equation in the continuous limit, is

∂tf − y∂xf + (βy − F(x))∂yf = 0. (7.14)

This describes motion with velocity damping and well defined trajectories in phase space.
There is a four-parameter gauge freedom for the transformation (7.4).

(2) q̂ = 0 p̂ = µ̂′

µ̂′ − κ̂ ′ r̂ = κ̂ ′

κ̂ ′ − µ̂′
κ̂ = µ̂ = 0 η̂22 = −κ̂ ′µ̂′ > 0

(7.15)

where the evolution equation (5.20) is

∂tf − y∂xf + (βy − F(x))∂yf + 1
2 (h22κ̂

′µ̂′) ∂2
y f = 0 (7.16)
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and there is again a four-parameter gauge freedom subject to the constraint κ̂ ′µ̂′ < 0.
This is formally identical with the adjoint of (7.1). This formal similarity is more than a
coincidence and gives another illustration of the consistency of the probabilistic framework
introduced in section 3 and elaborated in section 5. A simple choice of the gauge is
κ ′ = −µ′ = 1, λ′ = 0. Then, in view of (7.4) and (5.16), equations (5.19) and (5.23)
imply

η22 = ā2

b
(p + r) + o(a, ā)

1

b
〈dy • dy,X〉 = η22 + o(a, ā).

Therefore,

1

b
〈dy • dy,X〉 = ā2

b
(p + r) + o(a, ā) = ā2

b
(1− q) + o(a, ā)

= ā2

b
+ o(a, ā, q)→ η̂22 = h22

i.e. ā2/b is the average of the square of the velocity change from y to y + dy in a ‘small’
time interval b divided by b.
On the other hand, it is well known that in the usual interpretation of (7.1) as a model
of Brownian motion, h = βȳ2, with ȳ = thermal velocity, whereas, for short times t in
which the velocity changes from y0 to y, 〈(y − y0)

2〉/t = βȳ2 + o(t) = h + o(t) with 〈 , 〉
denoting the average over the bath (see, e.g., [25], equation (161)). Thus, in the continuous
limit h22 ≡ h and (7.16) coincides with the adjoint of (7.1).
It should be noted here, that this result follows by assuming that in the configuration space
(i.e. on the x-axis), motion is along well defined trajectories. It is a remarkable fact,
however, that if this assumption is relaxed, then (7.10) reduces to an equation describing
diffusion on the x-axis as well, a fact not easily accommodated in other approaches, as
explained at the beginning of this section.

Remarks.

(a) In the present section and in section 4, we have seen that up to a coordinate transformation,
our approach allows for concrete results in specific cases, once the drift term 〈dxi, X〉,
i.e. the average ‘infinitesimal’ change of xi is given, that is, once a prescription is given
for the choice of X in each particular case. In [13], X was specified by assuming it to
be Hamiltonian in the context of the ‘second-order calculus’ (5.21). This points out to
the need of developing symplectic mechanics on the oriented hypercubic lattice, to be
presented in another paper.

(b) A similar, but simpler procedure yields in the 1D case the following: we write (5.1) and
(5.3) as

t = −b(u + v) x = a(κu + λv)
a2

b
−→ h.

Then using (4.1), equation (5.16) becomes

p̂ = − λ̂

κ̂ − λ̂ q̂ = κ̂

κ̂ − λ̂ λ̂κ̂ < 0

and the evolution equation in the continuous limit, equation (5.20), gives

∂tf − R̂∂xf + 1
2h(λ̂κ̂)∂

2
x f = 0.

Note that 〈dx,X〉/b = a(κp + λq)/b = a2R/bh −→ R̂ so that the results of section 4
are recovered if κ̂ = −λ̂ = 1 (cf equations (4.6)–(4.10)).
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8. Comments on higher-order equations

The basic methodological ‘rules’ of the present approach introduced in the previous sections
are given here.

• The extended phase space has the structure of a (oriented hypercubic) lattice M.
• The phase space coordinates (xµ) are obtained by a coordinate transformation from the

lattice coordinates (uµ), involving the scaling parameters (aµ), so that the usual continuum
description in terms of (xµ) is recovered in the limit (5.3) (cf [33], p 244).

In principle, however, one can imagine other limits as well. In this section we first examine this
possibility in a somewhat more general setting and then we reconsider the case of the oriented
hypercubic lattice in the light of the results obtained.

Let the DC on M be defined by

duµ • duν = Cµνρ duρ Cµνρ ∈ A (8.1)

where the summation convention has been used (it is used throughout this section). This may
be considered as a class of (algebraic) deformations of the ordinary DC. It can be shown that
([20], section 4.5)

df = Dρf duρ f = f (u) ∈ A

Dρf = ∂ρf +
+∞∑
r=2

1

r!

∑
µ1,...,µr
ν1,...,νr−2

Cµ1µ2
ν1

Cµ3ν1
ν2

· · ·Cµrνr−2
ρ ∂µ1 · · · ∂µr f. (8.2)

We pass to the continuous limit by dividing {uµ} into several groups, with the same scaling in
each group. In each case one of the groups contains the ‘time’ variable(s). It will be readily seen,
that the results obtained are valid even if in each group, each coordinate is scaled differently,
provided the order of magnitude is the same for all elements of the same group. Moreover, any
finite limit of the scaling parameters is set equal to 1, to avoid useless cumbersome notation.

8.1. Division of {uµ} into two groups

ua =:
ta

b
a = 0, . . . , n ui =:

xi

a
i = n + 1, . . . , N

continuous limit:

a, b→ 0
a2

b
→ 1. (8.3)

From (8.1) and (8.2) we obtain

dta • dtb = b Cabc dt c +
b2

a
Cabi dxi

dta • dxi = a Caib dtb + b Caij dxj

dxi • dxj = a2

b
Cija dta + a Cijk dxk

(8.4)

Daf = ∂af + 1
2b C

bc
a ∂b∂cf + a Cbia ∂b∂if +

1

2

a2

b
Cija ∂i∂jf + o(a)

Dif = ∂if +
1

2

b2

a
Cabi ∂a∂bf + b Caji ∂a∂jf + 1

2a C
jk

i ∂j ∂kf + o(a).

(8.5)
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If as in section 5, quantities with a hat denote values in the limit (8.3), then in that limit,
equations (8.4) and (8.5) reduce to (cf equations (5.8) and (5.21) and [13], equation (4.13))

dta • dtb = 0 dta • dxi = 0 dxi • dxj = Ĉija dta (8.6)

Daf = ∂af + 1
2 Ĉ

ij
a ∂i∂jf Dif = ∂if (8.7)

so that the evolution equation (3.34) reduces to a well defined equation of the form (5.20).

8.2. Division of {uµ} into three groups

ua =:
ta

b
a = 0, . . . , m

ur =:
yr

c
r = m + 1, . . . , n

ui =:
xi

a
i = n + 1, . . . , N

continuous limit:

a, b, c→ 0
a2

c
→ 1

a3

b
→ 1 (8.8)

equations (8.1) and (8.2) imply

dta • dtb = b Cabc dt c +
b2

c
Cabr dyr +

b2

a
Cabi dxi

dta • dyr = c Carb dtb + b Cars dys +
bc

a
Cari dxi

dta • dxi = a Caib dtb +
ab

c
Cair dyr + b Caij dxj

dyr • dys = c2

b
Crsa dta + c Crst dyt +

c2

a
Crsi dxi

dyr • dxi = ac

b
Cria dta + a Cris dys + c Crij dxj

dxi • dxj = a2

b
Cija dta +

a2

c
Cijr dyr + a Cijk dxk

(8.9)

Dif = ∂if + o(a) (8.10a)

Drf = ∂rf +
1

2

a2

c
Cijr ∂i∂jf + o(a3) (8.10b)

Daf = ∂af +
1

2

a2

b
Cija ∂i∂jf +

ca

b
Cria ∂r∂if + 1

6

(
Cila C

jk

l + Cira C
jk
r + Ciba C

jk

b

)
∂i∂j ∂kf + o(a).

(8.11)

It is now clear that in the limit (8.8), equations (8.10) and all but the last one of (8.9) have a
well defined limit. The coefficient of Cija in the last of (8.9) and in (8.11) diverges as 1/a.
Therefore, the limit (8.8) exists in this case only if we impose an extra condition on the structure
constants which define the DC

Cija = a Kij
a Kij

a → K̂ij
a . (8.12)
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In this case (8.9)–(8.11) reduce in the continuous limit (8.8):

dta • dtb = 0 dta • dyr = 0 dta • dxi = 0 dyr • dys = 0

dyr • dxi = Ĉria dta dxi • dxj = K̂ij
a dta + Ĉijr dyr

(8.13)

Dif = ∂if Drf = ∂rf + 1
2 Ĉ

ij
r ∂i∂jf

Daf = ∂af + Ĉria ∂r∂if + 1
2 K̂

ij
a ∂i∂jf + 1

6 Ĉ
ir
a Ĉ

jk
r ∂i∂j ∂kf

(8.14)

so that the evolution equation (3.34) reduces to an equation containing third-order derivatives.
It is easily seen that proceeding in this way, that is, by dividing {uµ} into disjoint subsets,

scaled by parameter aA,A = 1, 2, . . . , L and then considering the limits

aA→ 0
(a1)

A

aA
→ finite Cµνρ → finite (8.15)

then unless L = 2, extra conditions on Cµνρ should be imposed so that in that limit the
commutation relations and df , f ∈ A, are well defined.

The significance of this general result can be better appreciated if we implement the
procedure described above, in the case of the oriented hypercubic lattice M, that is, when the
DC is that of section 5, equation (5.8). Instead of the limit (5.3) (or equivalently (8.3)), we
consider

aµ→ 0
aiajak

b
→ hijk

ai

b
→±∞ Aµν → Âµν (8.16)

that is, essentially the limit (8.8) (to simplify the presentation, no coordinates of order b2/3 are
considered since they lead to the results of section 5). However, it will become evident that
the results obtained are valid for any limit of the type (8.15).

By (8.16) we have

ai = b̄ãi ãi ãj ãk → hijk b̄ := b1/3. (8.17)

For arbitrary f ∈ A, df is given by (5.5) and we consider its value in the limit (8.16):
expanding (5.6) and using that

∑
µ B

µ

i =
∑
µ A

0
µB

µ

i = 0, once again we obtain (8.10a),
namely

∂̄if = ∂if + o(b̄).

Similarly, equation (5.7) gives

1

2
�f = 1

2b̄

∑
j,k

(∑
µ

(
ãjA

j
µ

) (
ãkA

k
µ

)
B
µ

0

)
∂j ∂kf

+ 1
6

∑
j,k,l

(∑
µ

(
ãjA

j
µ

) (
ãkA

k
µ

) (
ãlA

l
µ

)
B
µ

0

)
∂j ∂k∂lf + o(b̄). (8.18)

To simplify the notation, we put

Aµ(ξ) :=
∑
j

ãjA
j
µξj → Âµ(ξ) ξ := (ξj ) ∈ R

N

and we consider the functions

ϑ2(ξ) = 1

2b̄

∑
µ

(
Aµ(ξ)

)2
B
µ

0 (8.19a)

ϑ3(ξ) = 1
6

∑
µ

(
Aµ(ξ)

)3
B
µ

0 (8.19b)
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related to the coefficients in (8.18). We note that by the Schwartz inequality∣∣Aµ(ξ)∣∣ � ‖ξ‖‖Aµ‖ � ‖ξ‖max
µ
{‖Aµ‖} =: M‖ξ‖ → M̂‖ξ‖

where Aµ = (ãjAjµ) ∈ R
N and ‖ ‖ is the Euclidean norm in R

N . Therefore,

|ϑ3(ξ)| � 1
6M‖ξ‖

∑
µ

(
Aµ(ξ)

)2 ∣∣Bµ0 ∣∣→ 1
6M̂‖ξ‖

∑
µ

(
Âµ(ξ)

)2
B̂
µ

0 (8.20)

where we have used that Bµ0 → B̂
µ

0 � 0, equation (5.17).
On the other hand, if we require that (8.18) is well defined in the limit (8.17), then∑

µ

(
Aµ(ξ)

)2
B
µ

0 in (8.19a) should be at least of order b̄ (cf (8.12)) and therefore, its limiting
value should be zero, i.e.∑

µ

(
Âµ(ξ)

)2
B̂
µ

0 = 0.

Therefore, ϑ3(ξ) = 0 for all ξ ∈ R
N , that is, the coefficients of third derivatives of f in (8.18)

vanish.
We note the following.

(i) From the form of (8.18) and (8.19), it is clear that if we require df to be well defined in
the limit (8.17), then all coefficients of the derivatives of order higher than second in the
expansion of df , equation (5.5), vanish.

(ii) The same conclusion holds if we consider the limit (8.15), that is, instead of (8.17),
ai = b̄1/Lãi , L � 3.

(iii) For the above result, it is essential that B̂µ0 � 0. This is a consequence of our interpretation
of vector fields as transition probability distributions. In fact, the procedure followed
above, is a modification of an argument used in the theory of Markov processes which
ensures that higher than the second moments of such processes vanish ([40], section 3.4).

(iv) It can be seen from (8.18), that in the limit (8.17), the resulting second-order coefficients
are no longer non-negative-definite (see also (8.14)).

Therefore, summarizing our results in this section, we may say that a continuous
description can be obtained from any discrete lattice structure only if the discrete phase space
coordinates are at least of order

√
t , where t is the time. In this case we obtain evolution

equations at most of second order with non-negative-definite second-order coefficient, which
is the most general (linear autonomous) differential generator conserving probabilities ([31],
sections 4 and 5).

9. Discussion

In this section we summarize the basic assumptions introduced in this paper, results and
conceptual insights obtained and we comment on the limitations of the present approach and
on directions in which it can be further elaborated.

We started with a discrete picture of the extended phase space M. This corresponds
to looking at all fine structural details of the system and subsequently pass to its ‘coarser’
description, which corresponds to the limiting procedures followed in sections 4–8, as for
instance is done in statistical mechanics and lattice field theory.

On the other hand, we saw in section 3 that a discrete picture allows for a geometric
visualization of the universal DC on M as a di-graph, from which special DC on M can
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be easily constructed. In this way, their necessarily non-commutative character discussed
in section 3.1 is interpreted as due to the non-vanishing ‘size’ of the differentials. In fact,
these general ideas were illustrated in section 2. The 1D discrete model studied there, clearly
suggested connections between motion defined on M endowed with a non-commutative DC,
and a random walk on an oriented square lattice, one dimension of which is related to time (cf
(2.4)). In section 3, vector fields X were defined as elements of the space dual to 1-forms and
turn out to be first-order difference operators on the algebra A of functions on M, when M
is an (N + 1)-dimensional oriented hypercubic lattice. Here, a crucial fact is that only vector
fields of a special form are the generators of automorphisms of A, in contrast to the usual
(commutative) DC, where any vector field X (i.e. first-order differential operator) generates
(local) automorphisms of A. That a vector field generates automorphisms of A is equivalent
to the fact that it induces a flow of well defined trajectories on M. In the discrete case, these
are paths which connect points of the lattice. This raises the question of what kind of motion
is described by an arbitrary vector field. Thus, we have been led to a new way of looking at
vector fields, namely, both as generators of evolution of observables and as states describing
transition probabilities for ‘infinitesimal’ changes on the lattice.

In this new perspective, probabilistic concepts are introduced in the dynamics at the
‘infinitesimal level’, in contrast to (classical) statistical mechanics, where microscopic
dynamics and probability distributions are two a priori quite distinct concepts. Mathematically
speaking, this double role of vector fields stems from the fact that in the present context, the
concept of a vector field is much more general than the generator of an automorphism of A,
as in the case of classical dynamics based on ordinary DC (cf the discussion at the end of
section 3.2). In fact, this is a general feature of non-commutative DC on both discrete and
‘continuous’ manifolds, which allows for the description of evolution equations involving
higher than the first derivatives and/or difference operators. By using the concept of a
vector field, a non-commutative version of differential geometry and tensor calculus can be
developed in close analogy with the ordinary (commutative) case. This is of potential value
in many areas of physics (see, e.g., [12, 13, 20]). We will return to this point at the end of this
section.

An indication for the consistency of the interpretation of vector fields X as giving the
transition probability distribution for ‘infinitesimal’ motion along the lattice axes, is provided
by the proof that the associated correlation matrix P = (P µν) for the differentials of the
lattice coordinates, vanishes if and only ifX generates automorphisms of A, or equivalently, if
trajectories along the lattice are well defined. This means that there is no possible interference of
motions along different axes at the same point (motion along a specific axis is either impossible,
or certain). Moreover, in this way it became clear that, a function f on M is an observable,
in the sense that expectation values for its change represented by df , are given by 〈df,X〉,
multiplication of observables corresponding to the •-product in �1, equation (1.3). On the
basis of this and assuming on physical grounds that time flows with certainty, i.e. for every
vector field X there is always a change of some fixed element, t say, of A, it follows that dt is
proportional to the (essentially) unique eigenvector of the above-mentioned correlation matrix
(P µν) belonging to the zero eigenvalue. It turns out to be the unit ρ of the commutative algebra
(�1(A), •) of 1-forms, dt = −bρ (sections 3.3 and 3.4). Using these results, the generator of
dynamical evolution, X, is determined by N 1-forms αi vanishing along X, equation (5.14)
and the time evolution of observables is given by −X(f )/b = 0, equation (3.34), in direct
analogy with classical dynamics.

In section 4 and 5, using the probabilistic framework of section 3, we considered
appropriately scaled linear coordinate transformations on the lattice. We passed to the
continuous limit in which M becomes R

N+1 in the same way this is done in the theory
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of Brownian motion. We showed that the evolution equation for observables is a second-
order partial differential equation with non-negative-definite leading coefficient. This is the
limit of the correlation matrix (P µν) of (changes along) the lattice axes, namely (η̂ij ) in
(5.19) or (5.25). Each of its elements measures the deviation of the evolution operator
from an ordinary derivation (i.e. generator of deterministic motion) in the corresponding
phase space axis. Thus, non-commutativity of the DC in the continuous limit (that is, in
a ‘coarse-grained’ picture of the system’s evolution) is due to the fact that on a discrete (‘fine’)
level, motion described by a vector field, is in general not along well defined phase-space
trajectories. This is an idea which also appears in the theory of Brownian motion and stochastic
mechanics, though in a completely different mathematical and conceptual framework (see,
e.g., [43, 49, 50]). In fact, the explicit form of (η̂ij ) in (5.25) (cf (5.23) as well) is consistent
with the form of the diffusion matrix in the kinetic theory of open systems, the theory of
Markovian stochastic processes and StC. Moreover, the coefficients of first-order derivatives
in the evolution equation (5.20), are just the first moments of the coordinate changes with
respect to the transition probability distribution defined by the vector field X (cf (5.11) and
(5.15)). Therefore, our evolution equation (5.20) is the formal adjoint of a generalized FP
equation (backward equation), justifying our interpretation of f ∈ A as observables and thus
giving yet another indication of the consistency of our approach. An interesting conclusion in
this context is that the interpretation of vector fields as transition probability distributions on
the lattice, implies in the continuous limit that evolution is forward in time. Thus, if we accept
the correspondence

discrete description ←→ fine details of the system’s microstructure

↓ ↓
continuous description ←→ ‘coarse-grained’ (macroscopic) picture

then, in the present conceptual framework, irreversible evolution is a characteristic of
macroscopic systems.

The continuous limit considered in section 5, at first sight may appear to be an arbitrary
choice among many possible ones that would lead (via the expansion of (5.10)) to evolution
equations in general involving derivatives of any order. This issue was studied in section 8 and
we have shown that:

(i) the limiting procedure of section 5 is the only way to pass to a continuous description by
scaling the lattice coordinates, without imposing additional ad hoc conditions on the DC,
that is, it is the only continuous limit independent of the general form of the DC one starts
with;

(ii) if the probabilistic interpretation of vector fields introduced in section 3 is employed, then
for all types of limiting procedures, differential equations of higher than second order are
impossible as evolution equations.

Thus, (i) and (ii) imply the unique character of the limit considered in section 5.
In sections 4 and 7 we considered simple applications of our approach.

(a) The derivation of the 1D diffusion and Smoluchowski equations for a constant external
field, and the 1D FP equation in velocity space giving the Ornstein–Uhlenbeck process,
thus illustrating the possibility to incorporate random-walk models in the present context.

(b) The derivation of Kramers’ equation in one spatial dimension, by assuming (i) (Newtonian)
motion under friction linear in the velocity and an external field; (ii) trajectories exist in
configuration space, that is, motion is deterministic there. In fact, by using the explicit
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form of the correlation matrix η̂ij under the above assumptions, we have shown that the
diffusion coefficient in our evolution equation coincides with the diffusion coefficient of
Kramers’ equation computed in the context of the theory of Brownian motion, or of kinetic
theory.

On the other hand, our result makes explicit the use of assumption (ii) above, a fact
often hidden in the derivations of Kramers’ equation from physically plausible stochastic
models. Although this is also made explicit when Kramers’ equation is derived from Langevin’s
equation seen as a stochastic differential equation, in our opinion, the present approach has
some advantage. In the context of StC, it is not easy to relax this assumption (see the discussion
following (7.2)). In the present context, however, this is possible. Actually, the general form of
the corresponding corrections is evident, namely, a diffusion term in the configuration space,
much in accordance with what seems plausible on the basis of the (classical and quantum)
kinetic theory of open systems. Finally, it is clear that these results are valid in the 3D
case.

The approach elaborated in this paper, clarifies several conceptual issues concerning
the relevance of non-commutative DC to (the derivation of) kinetic equations and to StC.
In addition, by giving a definite prescription for the general form of irreversible evolution
equations in terms of vector fieldsX in the discrete framework, it provides an adequate discrete
formalism for deriving such equations in an appropriate continuous limit. However, it should
be supplemented by a ‘dynamics’, that is, a general procedure for choosing the generator X
in particular cases. In sections section 5 and 7, we have used Newton’s equations written
as 1-form relations (see (5.13) and the derivation of (5.15) and (7.12)). As briefly discussed
at the end of section 7, a more systematic approach is to develop symplectic mechanics in
the present context and require X to be a Hamiltonian, in analogy with classical mechanics.
In fact, from a mathematical point of view, this approach has been followed successfully
in the continuous regime for the second-order DC defined by (5.21), giving the promising
result that Hamiltonian evolution equations have the form of generalized FP equations that
appear in kinetic theory [13]. In another paper, the present approach will be elaborated in this
direction.

It is also possible (and physically desirable) to consider the extension of the present
formalism when the transformation from the lattice coordinates (uµ) to the scaled coordinates
(t, xi), equation (5.1), is not linear. Many of the present results are expected to still be
valid.

Finally, the general formalism and the conceptual framework in this paper, may be
extended from the case of the oriented hypercubic lattice, to more general structures induced
by appropriate DC on a discrete manifold. More precisely, it is clear that throughout this work,
differentials are not necessarily infinitesimal quantities in the usual geometric sense of ordinary
DC. Rather than that, if seen in the suggestive representation of a DC as a di-graph, they express
inter-relations between points of the discrete manifold, so that all points related to a given one,
should be considered as being neighbouring to it (see (3.5), its interpretation in section 3.1
and the differentials for the hypercubic lattice, equation (3.21)). This idea, that a DC is based
on a concept of a ‘relational’, rather than a geometric type of ‘proximity’ may be elaborated
further. In this way, it may become possible to develop a general mathematical and conceptual
framework for describing physical systems based on the inter-relations (interactions) among
its different parts, rather than on their relative geometric position. This is virtually relevant in
situations where collective effects are significant, or even dominant (e.g. systems with long-
range interactions), for which traditional approaches often do not work beyond the lowest
approximation. We will come back to this point in another work.
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Appendix A

Appendix A.1

Here we prove the following proposition referred to in section 3.2.

Proposition A.1. A one-to-one and onto mapping % : M �→ M induces an automorphism
φ : A �→ A that maps the basis {ei, i ∈ M} of A onto itself. The converse is also true.

Proof. [⇒] We define

φ : A �→ A : φ(f )(i) = f (%(i)). (A.1)

Clearly φ is an endomorphism and

φ(ei)(j) = ei(%(j)) = δi,%(j) = δ%−1(i),j = e%−1(i)(j)

hence

φ(ei) = e%−1(i) (A.2)

which shows that φ is one-to-one and onto.

[⇐ ] Conversely, letφ be an automorphism of A. From (3.2a) we obtainφ(ei)(φ(ej )−δij ) = 0.
If φ(ei) =

∑
k fikek , the above equation implies that fik = 0 or 1,∀ i, k. By (3.2b)∑

i,k fikek =
∑
k ek hence

∑
i fik = 1 where we have used that φ(1) = 1 and {ei} is linearly

independent. Consequently, in each column k of fik there exists exactly one element, on the
ikth row, say, which is non-zero and therefore, necessarily equal to 1. Now suppose that for
k = l, the corresponding non-zero elements are on the same ith row. Then, these columns are
identical which is impossible, since φ is one-to-one and onto. Therefore, in each row i of fik ,
exactly one k is non-zero and equal to 1. Hence, φ(ei) = ek for some k depending on i. Now,
φ−1(ei) = e%(i) defines % : M �−→ M which is one-to-one and onto and satisfies (A.1). �

Appendix A.2

By considering the case of classical dynamics, we explain below the choice of the sign in
(3.33) and comment on the form of (5.14).

Let the equations of motion of an N -dimensional dynamical system be

dxi

ds
= Ri(x).

The time evolution of observables f and states σ , is given by semigroups of Koopman and
Perron–Frobenius operators, respectively, whose infinitesimal generators lead to

∂f

∂s
= Ri(x) ∂f

∂xi

∂σ

∂s
= − ∂

∂xi

(
Ri(x)σ

)
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with the summation convention used here. The operators on the right-hand side are formal
adjoints to each other (cf, e.g., [24], chapter 7).

Then, the prescription for extended dynamics is:

equations of motion:
dxi

ds
= Ri(x) dt

ds
= 1 (A.3a)

evolution of states:

(
∂

∂t
+
∂

∂xi
Ri(x)

)
σ =: XS(σ) = 0 (A.3b)

evolution of observables:

(
− ∂
∂t

+ Ri(x)
∂

∂xi

)
f =: XO(f ) = 0. (A.3c)

Therefore, the system of characteristic equations of the evolution equation for observables,
is given by the vector field with components (XO(t),XO(xi)) = (−1, Ri), i.e. evolution is
obtained by integrating the equations of motion ‘backwards in time’†. This explains the (−)
sign in (3.33) and the form of (5.13). In fact, to the system of characteristic equations of the
observables’ evolution equation (A.3c) are associated the 1-forms

αi = dxi + Ri dt i = 1, 2, . . . , N (A.4)

vanishing along the integral curves of the vector field XO . This is equivalent to

〈αi,XO〉 = 0 i = 1, 2, . . . , N (A.5)

where 〈 , 〉 denotes the contraction of 1-forms with vector fields in the ordinary DC. In
the conceptual framework of the present paper, this is given by (5.13) and (5.14). It is a
completely general formulation that includes as special cases (in an obvious notation) Newton’s
equations (N = 2M)

βr = dqr + vr dt γ r = dvr + f r dt

or Hamilton’s equations

βr = dqr +
∂H

∂pr
dt γr = dpr − ∂H

∂qr
dt.

To connect this with the usual formulation of symplectic mechanics, we note that, by
introducing the symplectic matrix

(J ij ) = (Jij ) =
(

0 I

−I 0

)
(where I is theM×M identity matrix), the 1-forms above can be rewritten in a form identical
to (5.13), namely

αi = dxi +
∑
j

J ij
∂H

∂xj
dt ⇐⇒ αi =

∑
j

Jij dxj − ∂H
∂xi

dt

(i = 1, 2, . . . , 2M) so that the αi can be given in terms of the symplectic form

ω := 1
2

∑
i,j

Jij dxi ∧ dxj − dH ∧ dt ai = i∂/∂xiω

where i is the interior product operator for ordinary differential forms.

† Cf the theory of stochastic processes and stochastic differential equations (e.g. [48], section 2.6), where, for
observables (i.e. bounded functions of a stochastic process). Generator of the evolution of observables = (backward
generator of evolution of the probability distribution)=−(adjoint of forward generator of evolution of the probability
distribution).
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Appendix A.3

Some of the results in section 3 can be seen in the light of the discussion in the previous
subsection. By (3.24),X(uµ) = Pµ is the defining relation for the components of an arbitrary
vector fieldX. The approach in this paper leads to concrete results in particular cases, onceX
is chosen appropriately in each case, say 〈duµ,X〉 =: Pµ = R̃µ, as was done, for instance, in
section 4. This fact can be recast in a more suggestive form, namely

〈α̃µ,X〉 = 0 (A.6a)

where

α̃µ := duµ − R̃µρ (A.6b)

that is, the (N + 1) 1-forms α̃µ vanish along X. Note that, owing to
∑
µ P

µ = 1, we must

impose the condition
∑
µ R̃

µ = 1, hence
∑
µ α̃

µ = 0, that is, the α̃µ are linearly dependent.
Moreover, by (3.32), the correlation matrix of the lattice coordinates is Pµν = 〈α̃µ • α̃ν, X〉
in close analogy to (5.24). In fact, (A.6b) is just (5.13) written in the lattice coordinates (uµ).
To see this, we transform (A.6) to (t, xi) coordinates. Since Pµ = R̃µ, the α̃µ become

α0 =
∑
µ

(−b)A0
µα̃

µ = −b
∑
µ

α̃µ = 0

αi =
∑
µ

aiA
i
µα̃

µ =
∑
µ

aiA
i
µ duµ −

∑
µ

aiA
i
µR̃

µρ = dxi +
ai

b
(AR̃)i dt.

By setting (ai/b)(AR̃)i = Ri , the second equation becomes (5.13), hence (A.6a) is transformed
to (5.14).

Appendix B

As mentioned in section 5, remark (5), in specific cases, instead of expanding the evolution
equation (5.10) as in (5.12), it is possible to write it explicitly in terms of appropriate difference
operators which in the continuous limit gives the corresponding form of (5.20). As an
illustration, we present here an N -dimensional example which generalizes that of section 2.
We employ the definitions and notation of section 3 and 5.

The transformation (5.1) is chosen as follows (i = 1, 2, . . . , N):

t = −b
∑
µ

uµ xi = ai
(
u0 + · · · + ui−1 − ui + ui+1 + · · · + uN) (B.1)

so that its inverse (5.4) and the commutation relations (5.8) become

u0 = n− 2

2

t

b
+

1

2

N∑
i=1

xi

ai
ui = −1

2

(
t

b
+
xi

ai

)
(B.2)

dt • dt = −b dt dt • dxi = −b dxi dxi • dxi = −a
2
i

b
dt

dxi • dxj = −aiaj
b

dt + aj dxi + ai dxj .
(B.3)

In the limit (5.3), equation (5.21) takes the form

dt • dt = 0 dt • dxi = 0 dxi • dxj = −hij dt. (B.4)
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For the differential of a function of uµ

df =
∑
µ

[
f (u0, . . . , uµ−1, uµ + 1, uµ+1, . . . , un)− f (u0, . . . , un)

]
duµ.

As a consequence equation (5.5) takes the form

df = 1

2b

[
−

N∑
i=1

f (t − b, x + a, xi − ai, x + a) + (n− 2)f (t + b, x + a) + 2f (t, x)

]
dt

+
∑
i

(∂̄if )(t − b, x + a, xi, x + a) dxi (B.5)

with

(∂̄if )(. . . , x
i, . . .) := 1

2ai
[f (. . . , xi + ai, . . .)− f (. . . , xi − ai, . . .)].

After a lengthy calculation we obtain

df = [(∂−t f )(t, x)−
N∑
i=1

a2
i

2b
(�if )(t − b, x + a, xi, x + a)

+
∑

1�i<j�N

aiaj

b
(∂+i∂+j f )(t − b, x + a, xi, x, xj , x + a)] dt

+
∑
i

(∂̄if )(t − b, x + a, xi, x + a) dxi (B.6)

where

(∂−t f )(t, x) := 1

b
[f (t, x)− f (t − b, x)]

(�if )(. . . , x
i, . . .) := 1

a2
i

[f (. . . , xi + ai, . . .) + f (. . . , xi − ai, . . .)− 2f (. . . , xi, . . .)].

(cf (2.7)–(2.10)). Evidently, in the limit (5.3), equation (B.6) gives

df =
[
(∂tf )(t, x)−

N∑
i=1

hii (∂
2
i f )(t, x) +

∑
1�i<j�N

hij (∂i∂jf )(t, x)

]
dt

+
∑
i

(∂if )(t, x) dxi. (B.7)

By (3.24), a vector field in this calculus has the form

(Xf )(u) =
N∑
µ=0

Pµ(∂+µf )(u) =
N∑
µ=0

Pµ(f (u, uµ + 1, u)− f (u))

or, by (B.1)

(Xf )(t, x) = Xt(t, x)
[
(∂−t f )(t, x)−

N∑
i=1

a2
i

2b
(�if )(t − b, x + a, xi, x + a)

+
∑

1�i<j�N

aiaj

b
(∂+i∂+j f )(t − b, x + a, xi, x, xj , x + a)

]

+
∑
i

Xi(t, x) (∂̄if )(t − b, x + a, xi, x + a) (B.8)

Xt = −b(P 0 + · · · + Pn) Xi = ai(P 0 + · · · + P i−1 − P i + P i+1 + · · · + Pn). (B.9)
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Then by (3.17), X defines a flow on M, if and only if

Pµ P ν = δµν P µ (B.10)

and hasN + 1 solutions with Pµ = 1, P ν = 0, if ν = µ, for µ = 0, 1, . . . , N . Using (B.9) we
readily find that in (t, xi) coordinates, the evolution generator for observables, equation (3.34),
has components (1,±ai/b), thus obtaining the N -dimensional generalization of the ‘random-
walk model’ of section 2 (see equation (2.17)).
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